modified on 21 June 2013 at 11:05 ••• 3,104 views

Release62:CCCA

From NWChem

Jump to: navigation, search

Correlation consistent Composite Approach (ccCA)

The CCCA module calculates the total energy using the correlation consistent Composite Approach (ccCA). At present the ccCA module is designed for the study of main group species only.

EccCA = ΔEMP2 / CBS + ΔECC + ΔECV + ΔESR + ΔEZPE

where EMP2/CBS is the complete basis set extrapolation of MP2 energies with the aug-cc-pVnZ (n=T,D,Q) series of basis sets, ΔECC is the correlation correction,

ΔECC = ECCSD(T) / ccpVTZEMP2 / ccpVTZ

ΔECV is the core-valence correction,

ΔECV = EMP2(FC1) / augccpCVTZEMP2 / augccpVTZ

ΔESR is the scalar-relativistic correction,

ΔESR = EMP2 / ccpVTZDKEMP2 / ccpVTZ

and ΔEZPE is the zero-point energy correction or thermal correction. Geometry optimization and subsequent frequency analysis are performed with B3LYP/cc-pVTZ.

Suggested reference: N.J. DeYonker, B. R. Wilson, A.W. Pierpont, T.R. Cundari, A.K. Wilson, Mol. Phys. 107, 1107 (2009). Earlier variants for ccCA algorithms can also be found in: N. J. DeYonker, T. R. Cundari, A. K. Wilson, J. Chem. Phys. 124, 114104 (2006).

The ccCA module can be used to calculate the total single point energy for a fixed geometry and the zero-point energy correction is not available in this calculation. Alternatively the geometry optimization by B3LYP/cc-pVTZ is performed before the single point energy evaluation. For open shell molecules, the number of unpaired electrons must be given explicitly.

CCCA

       [(ENERGY||OPTIMIZE)   default ENERGY]
       [(DFT||DIRECT)   default DFT]
       [(MP2||MBPT2)   default MP2]
       [(RHF||ROHF||UHF)   default RHF]
       [(CCSD(T)||TCE)   default CCSD(T)]
       [NOPEN   <integer number of unpaired electrons   default   0 >]
       [(THERM||NOTHERM)   default  THERM]
       [(PRINT||NOPRINT) default NOPRINT]
       [BASIS <basis name for orbital projection guess>]
       [MOVEC <file name for orbital projection guess>]
END

One example of input file for single point energy evaluation is given here:

start h2o_ccca

title "H2O, ccCA test"

geometry units au

 H       0.0000000000   1.4140780900  -1.1031626600
 H       0.0000000000  -1.4140780900  -1.1031626600
 O       0.0000000000   0.0000000000  -0.0080100000

end

task ccca

An input file for the ground state of O2 with geometry optimization is given below:

start o2_ccca

title "O2, ccCA test"

geometry units au

 O       0.0000000000   0.0000000000  -2.0000
 O       0.0000000000   0.0000000000   0.0000

end

ccca

 optimize
 dft
 nopen 2

end

task ccca