SEARCH
TOOLBOX
LANGUAGES
Forum Menu
modified on 19 October 2015 at 18:27 ••• 8,322 views
Release66:Changelog
From NWChem
- New qmd module AIMD (NVT, NVE) for molecular and finite systems. It can be used with all Gaussian basis set ground and excited-state methods in NWChem that can provide an energy/gradient (analytic or numerical). It can also be combined with COSMO. A qmd_analysis standalone code is also provided to analyze the trajectory data.
- York-Karplus approach in COSMO (keywords to invoke the Klamt-Schuurmann approach is included in the documentation). With the extensive changes that were made in the COSMO module, the Klamt-Schuurman approach is not perfectly backward compatible with the previous 6.5 release. Some cases show small differences in the energies. We are working on a patch for backward compatibility.
- Improvements in the NWXC module (experimental)
- Integration of FEFF6 library into AIMD (FEFF is an automated program for ab initio multiple scattering calculations of X-ray Absorption Fine Structure (XAFS), X-ray Absorption Near-Edge Structure (XANES) and various other spectra for clusters of atoms developed at the University of Washington (John Rehr's group) http://feffproject.org/ ).
- New implementation of the PAW method into PSPW. Simple to use, just include PAW potential library in the PSPW simulation.
- Grimme2, and Grimme3 potentials added to NWPW
- MGGA-MVS Exchange functional added to gaussian DFT module
- Initial convergence of NWPW wavefunctions now done using finer grids in successive stages.
- Reading and writing of NWPW wavefunctions in ASCII format. To use just append .ascii to the NWPW vectors filename
- Metropolis NVT and NPT added to PSPW
- Equation parser for defining collective variables in Metadynamics and TAMD
- New NEB solver based on Full Approximation Scheme (FAS) solver. Currently only available on Bitbucket (https://bitbucket.org/ebylaska/python-neb.git). Integrated version will be available soon in the development tree.
- Parallel in time integrator for use with NWChem. Python programs available at ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-139-011332/
- Trajectories from the NWChem molecular dynamics module can be exported in the xyz format
- Intel Xeon Phi port for MR-CCSD(T)
- The supported version of the Global Arrays library is now 5-4
- New ARMCI_NETWORK=MPI-PR (MPI progress ranks). It is the recommended option (performance-wise) when no other native ports are available.
- Streamlined installation (automated detection of MPI variables)
- Improved ScaLapack and ELPA integration. The current ELPA interface is compatible with the 2015.05 release.
- Improved parallelization in DFT Charge-Density fitting (removed semi-direct option)
- Improved parallel scalability of Semi-direct MP2
- Improved stability of in-core installation (e.g. USE_NOIO=y) of Semi-direct MP2
- Improvements in Xeon Phi offloading for single reference [Intel Xeon Phi port for MR-CCSD(T) CCSD(T)]
- New LINUX64 architecture available: ppc64le
- Bug fix for CDFT (same as http://www.nwchem-sw.org/images/Cdft.patch.gz)
- Bug fix for anisotropic part of the DFT polarizabilities
- Bug fix in PSPW implementation of Electron Transfer calculation (i.e. periodic version of ET module)